HYPOXIA

Department of Pathophysiology Faculty of Medicine in Pilsen, Charles University Jan Cendelín, 2017

```
Hypoxia = lack of O<sub>2</sub> in the tissues

Hypoxemia = lack of O<sub>2</sub> in the blood

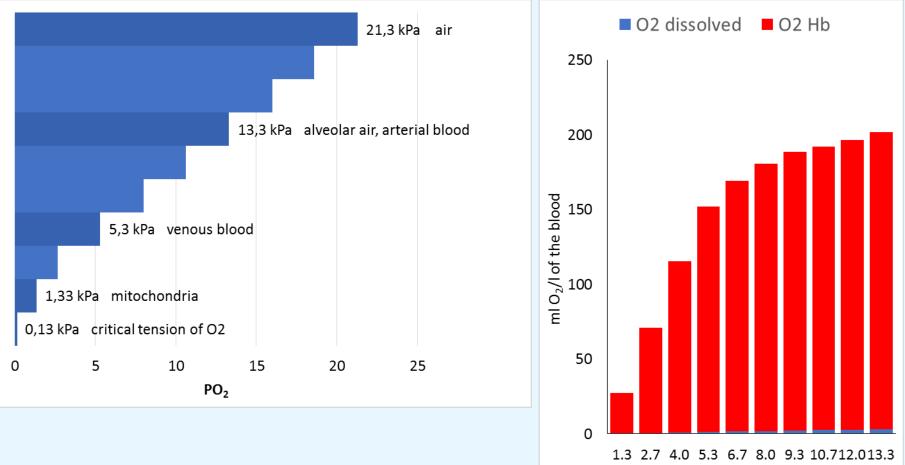
Asphyxia = lack of O<sub>2</sub> + accumulation of CO<sub>2</sub>

Hypercapnia = \uparrow PaCO<sub>2</sub>

Hypocapnia = \downarrow PaCO<sub>2</sub>
```

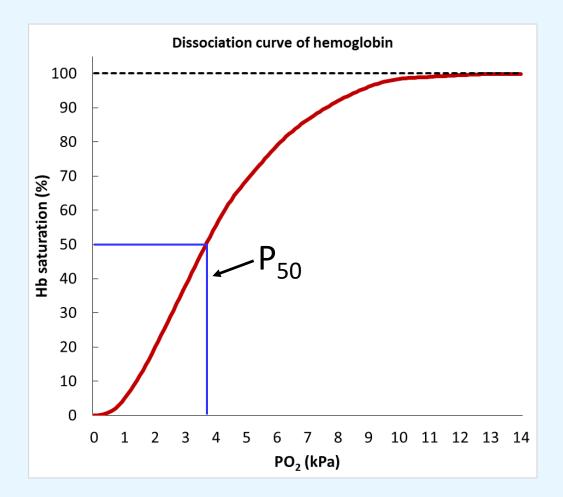
Oxygen delivery:

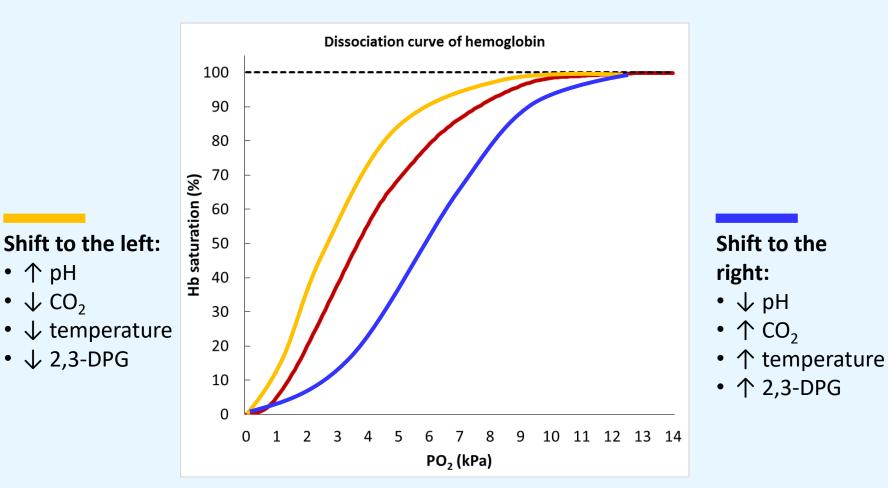
- atmosphere (air composition, pressure), respiratory system, circulation, blood (hemoglobin)


O₂ consumption: 200 - 250 ml/min

- ATP production in the mitochondria, oxidative processes

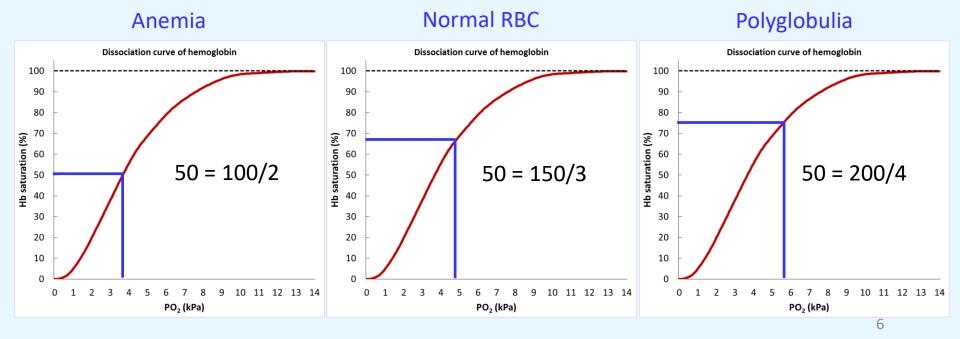
O₂ reserve for some 5 min: the lungs, blood, myoglobin in the muscles


O₂ gradient between from the atmosphere to mitochondria


 O_2 content in 1 l of the blood in in dependence on PO_2

 $1 \text{ g HbO}_2 \rightarrow 1,34 - 1,39 \text{ ml O}_2$

 PO_2 (kPa)



CYANOSIS

- = blue or purple color of the mucous membranes and skin caused by reduced hemoglobin
- If reduced hemoglobin > 50 g/l
- It depends on:
 - -hemoglobin saturation with O₂
 - -total hemoglobin concentration \rightarrow easy in the presence of polycythemia (polyglobulia)

ightarrow less probable in anemia

CYANOSIS

Peripheral

- restricted on some part of the body
- blood stagnation (e.g. disorders of the veins)
- Central
 - whole body, more marked on mucous membranes
 - hypoxic hypoxia respiratory disorders, right-left shunts

TYPES OF HYPOXIA

- Hypoxic
- Transport, anemic
- Circulatory
- Histotoxic

Hypoxic hypoxia

- = hypoxia with decreased PaO₂
- \rightarrow decreased hemoglobin saturation
- \rightarrow decreased O₂ in the blood
- \rightarrow decreased PvO₂ higher O₂ extraction in the tissues

Affects the whole organism.

Causes:

- Low partial pressure of O2 in the air
 - high altitude, breathing in a restricted space, increased content of other gasses in the air
- Ventilation disorders
 - obstructive and restrictive disorders
- Disorders of diffusion in the lungs
 - restrictive disorders (\downarrow diffusion area), emphysema, pulmonary edema, pneumonia, ARDS
- Disorders of lung perfusion
 - pulmonary embolism, changes of ventilation/perfusion ratio
- Heart defects with right-left shunt + A-V shunts in the lungs

Hypoxic hypoxia

Manifestations: - depend on the cause and mechanism of hypoxia development

- Central cyanosis
- Dyspnea
- Fatigue, reduced fitness
- Disorders of organ function (the brain)
- Lactate acidosis (rather while performing simultaneous muscle activity)

Respiratory insufficiency

Partial, type 1

- Hypoxia without hypercapnia (even with hypocapnia)

Global, type 2

- Hypoxia + hypercapnia
- Ventilation disorders

PaCO₂ depends namely on lung ventilation.

Due to its good solubility, CO_2 is less affected by diffusion disorders than O_2 .

Manifest – changes of respiratory gasses also during resting Latent – respiratory gasses normal in rest but changed during physical activity

Transport (anemic) hypoxia

- = hypoxia due to reduced capacity of the blood do bind O_2
- \rightarrow normal PaO₂
- \rightarrow normal hemoglobin saturation (if it is capable of O₂ binding)
- \rightarrow reduced amount of O₂ in the blood

Affects the whole organism.

Causes:

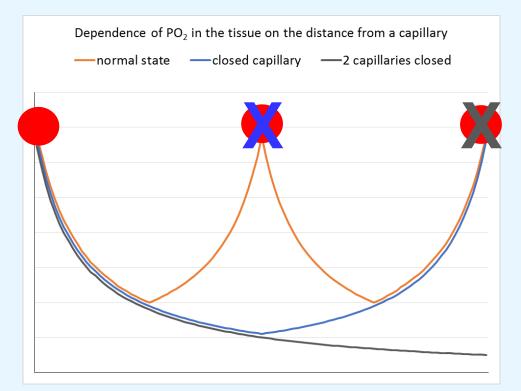
- Anemia lack of hemoglobin
- CO intoxication
- Methemoglobinemia = nitrate intoxication

Manifestations:

- Pallor in anemia, red skin in CO intoxication, cyanosis with grey shade in methemoglobinemia
- Fatigue, dyspnea, tachycardia, palpitation, functional heart murmur
- In severe cases (e.g. CO intoxication, severe anemia) organ disorders, disturbance of consciousness, death

Circulatory hypoxia

- = hypoxia due to reduced blood perfusion of the tissues
- \rightarrow normal PaO₂
- ightarrow normal hemoglobin saturation
- \rightarrow normal O₂ content in the blood
- \rightarrow usually reduced PvO₂ (\uparrow extraction of O₂ in the tissues)


Globally or locally.

Causes:

- Ischemic
 - arterial occlusion
 - left heart failure
 - shock
- Stagnation
 - vein occlusion
 - right heart failure

Manifestation:

- Pain
- Pallor (ischemia)
- Cyanosis (stagnation)
- Organ affection

Reduced filling of circulation leads to collapse of some capillaries.

Histotoxic hypoxia

- = hypoxia due to inability of the cells to use oxygen (mitochondria, cytochromoxidase)
- \rightarrow normal PaO₂
- ightarrow normal hemoglobin saturation
- \rightarrow normal O₂ content in the arterial blood
- \rightarrow increased $\rm O_2$ content in the venous blood

Usually global.

Causes:

- Cyanide intoxication
- Cobalt intoxication

Manifestation:

No cyanosis, rather red skin (oxygenated blood in the veins)

Compensatory responses to hypoxia

- Activation of various reactions in individual types of hypoxia
 - It depends on PaO₂ and O₂ oxygen content in the arterial blood
 - → activation of peripheral (aortal and carotic bodies, kidney, vessels, erythrocytes) and central chemoreceptors (respiratory center)

 \rightarrow sympathetic activation, respiratory center activity influencing, erythropoietin production, vasomotor activity, 2,3-DPG production

- Local or global level
- Different efficiency in individual types of hypoxia
- Can complicate the state.

Compensatory responses to hypoxia

Local reactions:

- Vasodilation induced by decreased PaO₂ or increased PaCO₂
 - 1 blood flow

But: generalized vasodilation \rightarrow drop of peripheral resistance – a factor of shock pathogenesis

But: In the lungs, hypoxia induces vasoconstriction \rightarrow pulmonary hypertension

- Hb dissociation curve shift to the right \rightarrow decreased affinity of Hb to $O_2 \rightarrow$ release O_2
- Anaerobic metabolism → lactate acidosis
- VEGF (vascular endothelial growth factor) expression \rightarrow new vessels
- p53 expression \rightarrow reduction of cell proliferation

Compensatory responses to hypoxia

Systemic reactions:

- Hyperkinetic circulation acute reactions
 - sympathetic activation
 - efficient in the transport type of hypoxia
- Increased ventilation acute reaction
 - ineffective in the anemia, efficient in reduced PO₂ in the air
 - \rightarrow hypocapnia \rightarrow respiratory alkalosis
- Erythropoietin (kidneys, liver) long-term response
 - polyglobulia, correction of the anemia
 - mainly in the hypoxic or circulatory type of hypoxia